Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur J Clin Invest ; 52(11): e13859, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2001632

ABSTRACT

BACKGROUND: Accumulating evidence suggests that endothelial dysfunction is implicated in the pathogenesis and severity of coronavirus disease 2019 (COVID-19). In this context, vascular impairment in COVID-19 might be associated with clinical manifestations and could refine risk stratification in these patients. METHODS: This systematic review aims to synthesize current evidence on the frequency and the prognostic value of vascular dysfunction during acute and post-recovery COVID-19. After systematically searching the MEDLINE, clinicaltrials.gov and the Cochrane Library from 1 December 2019 until 05 March 2022, we identified 24 eligible studies with laboratory confirmed COVID-19 and a thorough examination of vascular function. Flow-mediated dilation (FMD) was assessed in 5 and 12 studies in acute and post-recovery phase respectively; pulse wave velocity (PWV) was the marker of interest in three studies in the acute and four studies in the post-recovery phase. RESULTS: All studies except for one in the acute and in the post-recovery phase showed positive association between vascular dysfunction and COVID-19 infection. Endothelial dysfunction in two studies and increased arterial stiffness in three studies were related to inferior survival in COVID-19. DISCUSSION: Overall, a detrimental effect of COVID-19 on markers of endothelial function and arterial stiffness that could persist even for months after the resolution of the infection and provide prognostic value was congruent across published studies. Further research is warranted to elucidate clinical implications of this association.


Subject(s)
COVID-19 , Vascular Stiffness , Brachial Artery , COVID-19/complications , Endothelium , Endothelium, Vascular , Humans , Pulse Wave Analysis
2.
Sci Rep ; 11(1): 20239, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1467128

ABSTRACT

Accurate risk stratification in COVID-19 patients consists a major clinical need to guide therapeutic strategies. We sought to evaluate the prognostic role of estimated pulse wave velocity (ePWV), a marker of arterial stiffness which reflects overall arterial integrity and aging, in risk stratification of hospitalized patients with COVID-19. This retrospective, longitudinal cohort study, analyzed a total population of 1671 subjects consisting of 737 hospitalized COVID-19 patients consecutively recruited from two tertiary centers (Newcastle cohort: n = 471 and Pisa cohort: n = 266) and a non-COVID control cohort (n = 934). Arterial stiffness was calculated using validated formulae for ePWV. ePWV progressively increased across the control group, COVID-19 survivors and deceased patients (adjusted mean increase per group 1.89 m/s, P < 0.001). Using a machine learning approach, ePWV provided incremental prognostic value and improved reclassification for mortality over the core model including age, sex and comorbidities [AUC (core model + ePWV vs. core model) = 0.864 vs. 0.755]. ePWV provided similar prognostic value when pulse pressure or hs-Troponin were added to the core model or over its components including age and mean blood pressure (p < 0.05 for all). The optimal prognostic ePWV value was 13.0 m/s. ePWV conferred additive discrimination (AUC: 0.817 versus 0.779, P < 0.001) and reclassification value (NRI = 0.381, P < 0.001) over the 4C Mortality score, a validated score for predicting mortality in COVID-19 and the Charlson comorbidity index. We suggest that calculation of ePWV, a readily applicable estimation of arterial stiffness, may serve as an additional clinical tool to refine risk stratification of hospitalized patients with COVID-19 beyond established risk factors and scores.


Subject(s)
COVID-19/mortality , Cardiovascular Diseases/epidemiology , Vascular Stiffness , Aged , Aged, 80 and over , Comorbidity , Female , Humans , Italy/epidemiology , Longitudinal Studies , Male , Middle Aged , Retrospective Studies , Risk Factors , United Kingdom/epidemiology
3.
Heart Fail Rev ; 27(1): 251-261, 2022 01.
Article in English | MEDLINE | ID: covidwho-1147607

ABSTRACT

Myocardial inflammation in COVID-19 has been documented. Its pathogenesis is not fully elucidated, but the two main theories foresee a direct role of ACE2 receptor and a hyperimmune response, which may also lead to isolated presentation of COVID-19-mediated myocarditis. The frequency and prognostic impact of COVID-19-mediated myocarditis is unknown. This review aims to summarise current evidence on this topic. We performed a systematic review of MEDLINE and Cochrane Library (1/12/19-30/09/20). We also searched clinicaltrials.gov for unpublished studies testing therapies with potential implication for COVID-19-mediated cardiovascular complication. Eligible studies had laboratory confirmed COVID-19 and a clinical and/or histological diagnosis of myocarditis by ESC or WHO/ISFC criteria. Reports of 38 cases were included (26 male patients, 24 aged < 50 years). The first histologically proven case was a virus-negative lymphocytic myocarditis; however, biopsy evidence of myocarditis secondary to SARS-CoV-2 cardiotropism has been recently demonstrated. Histological data was found in 12 cases (8 EMB and 4 autopsies) and CMR was the main imaging modality to confirm a diagnosis of myocarditis (25 patients). There was a substantial variability in biventricular systolic function during the acute episode and in therapeutic regimen used. Five patients died in hospital. Cause-effect relationship between SARS-CoV-2 infection and myocarditis is difficult to demonstrate. However, current evidence demonstrates myocardial inflammation with or without direct cardiomyocyte damage, suggesting different pathophysiology mechanisms responsible of COVID-mediated myocarditis. Established clinical approaches should be pursued until future evidence support different actions. Large multicentre registries are advisable to elucidate further.


Subject(s)
COVID-19 , Myocarditis , Humans , Male , Myocarditis/diagnosis , Myocytes, Cardiac , Registries , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL